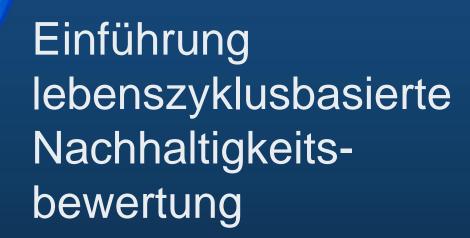


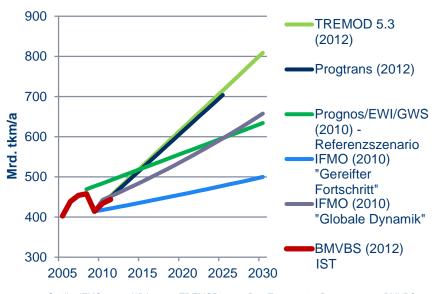
Alternative Kraftstoffe im Tank die Lösung für einen nachhaltigen Straßengütertransport?


Dr. Michael Faltenbacher Ludwigsburg 25.9.2013

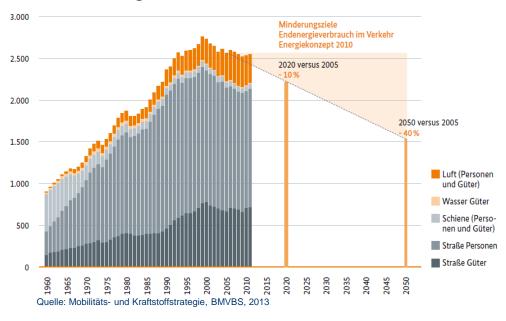
Agenda

- 1. Einführung lebenszyklusbasierte Nachhaltigkeitsbewertung
- Ganzheitliche Bewertung Kraftstoff-& Antriebskonzepte am Beispiel Biodiesel und Erd-/Biogas
- 3. Zusammenfassung

Ausgangssituation


- **Verkehrsentwicklung**: zukünftig weiter steigendes Transportaufkommen
- Markt: starker Wettbewerbsdruck für Transportdienstleister/ Fahrzeughersteller
- Klima- und Umweltpolitik: Senkung von Energieverbrauch und CO₂-Emissionen, Verschärfung Abgasnormen für Schadstoffe: Euro VI (ab 2014)
- **Kunde**: Nachfrage/Anspruch Transportdienstleister: Anbieter eines wettbewerbsfähigen, nachhaltigen Gütertransports, gilt analog für Nutzfahrzeughersteller
- **Technologie**: Dieselverbrennungsmotor mit Dieselkraftstoff aus fossilen Quellen und Beimischung Biodiesel (aktuell DE: B7) als aktuelle Referenzantriebstechnologie
- **Technologieentwicklung:** wachsende Anzahl Alternativen zu Selbstzündungsmotor mit Dieselkraftstoff gegeben sowie Technologien zur Effizienzsteigerung und Sicherheitserhöhung
- → Frage: Welche Maßnahmen tragen am effektivsten zu einem nachhaltigen Straßengüterverkehr bei?
- → Notwendigkeit einer quantitativen Nachhaltigkeitsbewertung

Entwicklung Verkehrsaufkommen – klimapolitische Minderungsziele – ein Spannungsfeld


Prognosen Straßengüterverkehrsleistung

Quelle: IFMO 2010, UBA 2012, TREMOD 2012, ProgTrans 2012, Prognos 2010, BMVBS 2012

- Es wird von einem deutlich steigenden Güterverkehrsaufwand ausgegangen.
- Bei Betrachtung (mautpfl.) Fzg.km aktuell keine weitere Steigung zwischen 2011/12

Endenergieverbrauch des Verkehrs

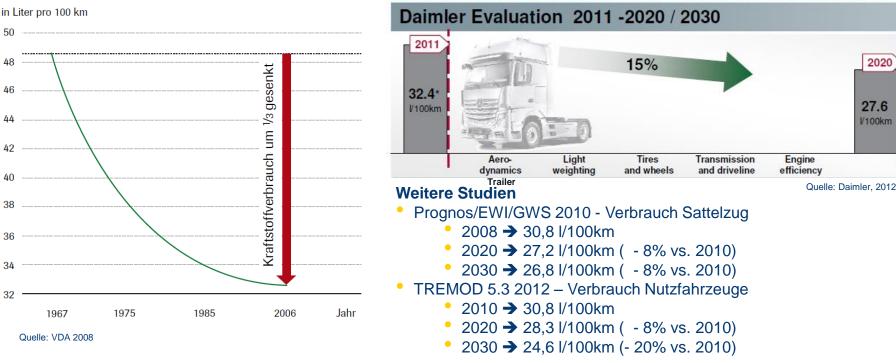
- Für Verkehr in DE neben Energieziel kein explizites CO₂ Minderungsziel, allgemeines Ziel für Dt.land: - 40% CO₂ bis 2020 vs. 1990 (-55% bis 2030)
- EU Transport Wh.paper: 60% CO₂ bis 2050 vs. 1990
- → Entkopplung Verkehrswachstum Ressourcenbedarf & Umweltwirkungen erforderlich um die verschiedenen Minderungsziele zu erreichen

Ansatz für ganzheitliche Nachhaltigkeitsbewertung Straßengüterverkehr

 Ganzheitliche Betrachtung durch Berücksichtigung des gesamten Lebenszyklus

Ansatz für ganzheitliche Nachhaltigkeitsbewertung Straßengüterverkehr

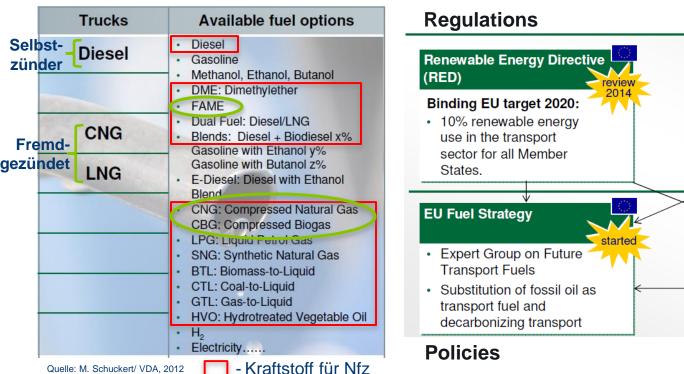
- Ganzheitliche Betrachtung durch Berücksichtigung des gesamten Lebenszyklus
- 2 Bewertungsdimensionen:
 - Ökonomie
 - Ökologie
- Analyse und Vergleich verschiedener Maßnahmen:
 - Kombinationen von Kraftstoff- und Antriebstechnologien
 (z.B. Dieselblends BXX, GtL, CNG/LNG bzw. Gasmotor, Antriebselektrifizierung etc.)
 - neue Komponenten (z.B. Aerodynamik, Wärmerückgewinnung,...)
 - Optimierung von Komponenten
 - Fahrertraining
- Berücksichtigung konkrete Einsatzbedingungen (Routenprofil, Ladung etc.)
- Berücksichtigung Lebens- bzw. Haltedauer → meist kontinuierliche Fuhrparkerneuerung
- → Steigerung der Nachhaltigkeit des Straßengüterverkehrs durch ökonomische & ökologische Bewertung über gesamten Lebensweg



1. Maßnahme: Reduktion Energieverbrauch

Entwicklung Kraftstoffverbrauch (Fernverkehr 40t)

- Reduzierung Verbrauch 40t Lastzug auf 27-28 l/100km (2020) bzw. 25-27 l/100km (2030)
- Verbesserung Kraftstoffverbrauch kann je nach Anstieg Verkehrsleistung kompensieren


→ Zur Erreichung Minderungsziele noch weitere Maßnahmen erforderlich

Welche Optionen gibt es?

Antriebstechnologie und Kraftstoffe

Expert Group on Future
Transport Fuels
Substitution of fossil oil as transport fuel and decarbonizing transport

Substitution of fossil oil as transport fuel and decarbonizing transport

Substitution of fossil oil as transport

Mobility and Fuel Strategy

Long-term perspective of fossil and renewable fuels

German positioning in European fuel strategy

- Hier betrachtetet

→ Neben technischen Parameter wachsender Einfluss politischer Ziele und Strategien auf Kraftstoff/ Antriebssystem

Fuel Quality Directive (FQD)

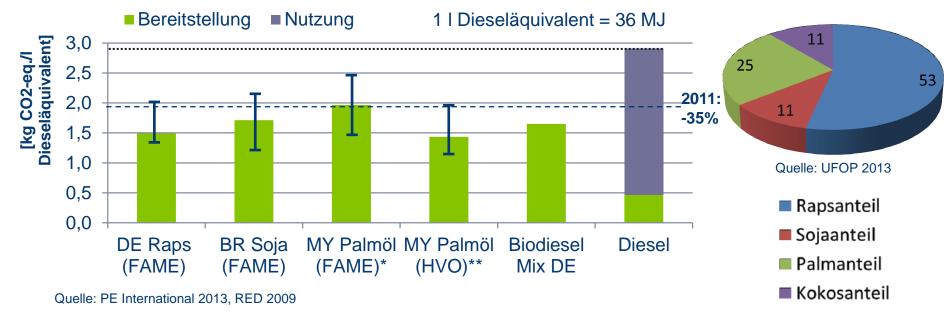
transport fuel:

· Reduction of GHG

emissions 6% until

2020 (based on 2010)

Binding targets for suppliers of


Kraftstoffsteckbrief – ausgewählte Aspekte

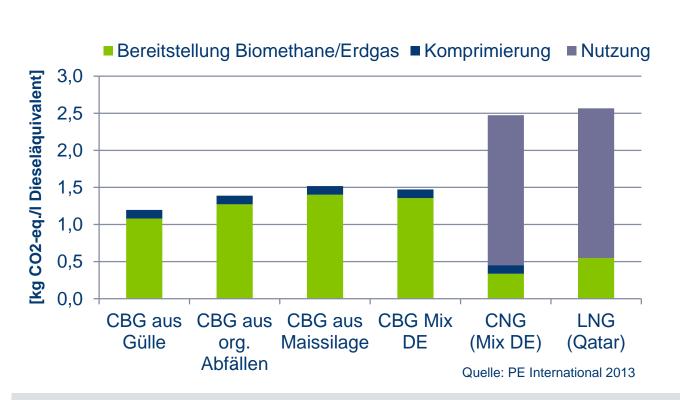
Biodiesel	 FAME – Ester auf Basis Pflanzenöl / tierische Fette HVO – Hydrierte Öle auf Basis Ölpflanzen / tierische Fette 			
Fahrzeug	 Bei B7 keine Modifikation notwendig (EN 590) Herstellerabh. Freigabe für B100 FAME, aktuell nicht für Euro VI B 100 auf Basis HVO unproblematisch ("drop-in fuel") 			
Qualität	 FAME (Fettsäuremethylester) über DIN EN 14214 (Kältebeständigkeit, Motorölverdünnung, Lagerfähigkeit, Kat"gifte", PM Filter) HVO (Hydriertes Pflanzenöl) über CEN/TS 15940 			
Verfügbarkeit	 Signifikante Anteile aus Importen gedeckt (Palmöl, Soja, Kokos) Vorschlag für überarbeite RED 2012 begrenzt Ziele für Biodiesel aus Nahrungsmitteln und gibt Anreize für Biodiesel aus Abfallstoffen Nutzungskonkurrenz → "Teller-Tank" Diskussion (Relation zw. Flächenbedarf Bioenergie, Nahrungsmittel, Fleisch/Milch: 1:5:92) 			
Ökobilanz Bereitstellung	 Biomasseart und -herkunft (dt. Raps, malays. Palmöl, brasilan. Soya etc.) Verwendung von Nebenprodukten (energetisch, stofflich, Abfall) Einbezug von Landnutzungsänderungen (LUC und ggf. ILUC) 			
Ökobilanz Nutzungsphase	 Biogene CO2 Emissionen bei der Verbrennung, kein fossiles CO2 Schadstoffe: FAME: Verbesserung bis auf NO_X; HVO: Verbesserung Veränderte Wechselintervalle Betriebsstoffe (z.B. Motoröl bei B100 FAME) 			
Preis/Steuer	 Seit 2013 gilt der volle Mineralölsteuersatz von 45 ct/l. Preis B100 vs. Diesel (B7) ca. +20% → B100 Markt marginalisiert 			

Okologische Analyse Kraftstoffe

Biodiesel aus unterschiedlichen Biomassen (FAME) im

Vergleich zu Diesel (ohne ILUC) Biodieselmix DE 2013

- typischer Wert nach RED, erfüllt 35% Einsparung, bei Berücksichtigung LUC mit Rodung 3,8 kg CO₂-Äg./I Dieseläg.
- ** bei Berücksichtigung LUC mit Rodung 4,4 kg CO₂-Äq./I Dieseläg
- Deutliche Einsparungen möglich, aber Herkunft und Anbau entscheidend
- Zukünftige Nutzung von Reststoffen vermeidet "Tank-Teller" Diskussion

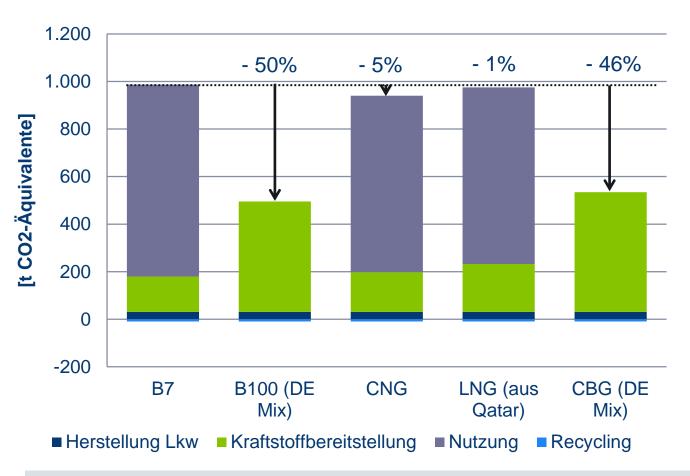


Kraftstoffsteckbrief – ausgewählte Aspekte

Erd-/Biogas	CNG (compressed natural gas)	LNG (liquefied natural gas)	CBG (compressed biogas/-methane)	
Fahrzeug	Bei Ottomotoren höherer Verbrauch durch ca. 10-15% niedrigeren Wirkungsgrad vs. Dieselmotor, unterschiedliche Reichweiten bzw. Tankgewichte, Standzeiten			
Qualität	• DIN 51624		• CEN/TC 408	
Ökobilanz Gasbereit- stellung	TransportdistanzLeckageratenStrom für Komprimierung	Herkunft (importiert oder Pipelinegas)Verflüssigung energieintensiv	 Aus Reststoffen oder Energiepflanzen 	
Emissionen	Euro VI vgl.bar mit Diesel, CO2 -24% 56g/MJ vs. 74 g/MJ bei Dieselverbrennung		Euro VI, vorwiegend biogene CO ₂ Emissionen	
Verfügbarkeit	900 Tankstellen in DE, wenige für Lkw	Bisher keine Tankstellen in DE, EU Ziel: alle 400 km an TEN-T	Reines CBG an ~120 Tankstellen in DE (2012) Ziel: min. 20% in 2015	
Preis	ca. 30% geringere Kosten gegenüber Diesel			
Steuer	Reduzierte Energiesteue (13,9 €/ MWh statt 31,8	Vollständige Befreiung bis 31.12.2015, danach wie CNG		

Ökologische Analyse Kraftstoffe – Bsp. Treibhausgase

Bereitstellung von Biomethan/Erdgas (CBG/CNG/LNG)

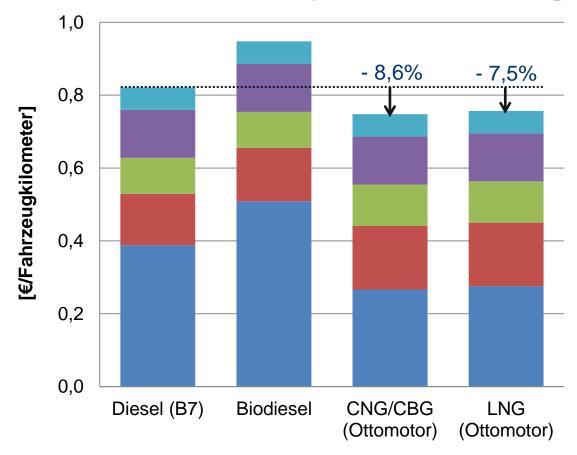

Quelle: FNR 2012

→ Biomethan aus Abfällen/Gülle mit deutlichen THG Einsparungen gegenüber fossilen Kraftstoffen ohne "Teller-Tank " Diskussion

Ökologische Lebenszyklusanalyse Gesamtfahrzeug

Annahmen:

- 40 t Lastzug Fernverkehr
- Laufleistung 1 Million km (8 Jahre, 125.000 km/a)
- Unterschiede der Antriebskonzepte bei der Herstellung des Fahrzeuges nicht berücksichtigt
- Effizienz Erdgasmotor
 (λ=1) 12,5% (10 15%)
 niedriger vs. Diesel


Quelle: PE International 2013

- → Vorteile von CNG teilweise durch Mehrverbrauch kompensiert
- →Biokraftstoffe können zur Reduzierung von THG beitragen (Anbau entscheidend)

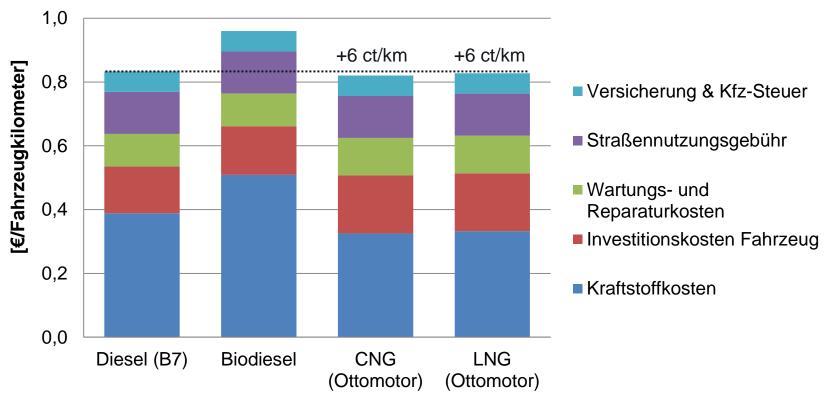
Ökonomische Analyse – Fahrzeugbezogene Kosten

Quelle: PE International, BGL, Kfz Anzeiger, Eurostat, EID, Frost&Sullivan

- Versicherung & Kfz-Steuer
- Straßennutzungsgebühr
- Wartungs- und Reparaturkosten
- Investitionskosten Fahrzeug
- Kraftstoffkosten

Annahmen

- 40t Lastzug im Fernverkehr, 8 Jahre, 125.000 km/a
- LNG aus Qatar importiert, Importpreis aktuell ca. 10€/GJ
- 30% Mehrkosten CNG/LNG Fahrzeug gegenüber Diesel, Wartung + 15%
- Kraftstoffpreise (o. Mwst)
 - B7 1,18 €/I
 - B100 1,55 €/I Dieseläq.
 - CNG 0,72 €/I Dieseläq.
 - LNG 0,75 €/I Dieseläq.


→ Erdgas ergibt in der TCO ca. 5-10 ct/km Einsparpotential

Okonomische Analyse – Fahrzeugbezogene Kosten

Szenario: Wegfall reduzierte Energiesteuer Erdgas ab 2019

Quelle: PE International, BGL, Kfz Anzeiger, Eurostat, EID, Frost&Sullivan

→ Volle Besteuerung Erdgas würde Vorteil gegenüber Diesel neutralisieren

Zusammenfassung - Kraftstoff-/ Antriebsvergleich

- Signifikante Effizienzsteigerungen/ Kraftstoffreduktion erzielt,
 Höhe des Beitrages zu Reduktionszielen von THG/ Energieverbrauch abhängig von tatsächlichen Entwicklung der Verkehrsleistung
- Reduzierung THG & fossiler Energieverbrauch durch Biokraftstoffe möglich, folgende Faktoren sind zu beachten:
 - Herkunft & Anbau der Biomasse sowie Verfügbarkeit, da Flächen begrenzt
 Nutzungskonkurrenz
 - Qualität des Kraftstoffes
- Biokraftstoffe aus Reststoffen, org. Abfällen oder Gülle mit guter THG Bilanz, keine Nutzungskonkurrenz als Nahrungsmittel.
- Erdgasfahrzeuge mit Vorteilen gegenüber Diesel bei THG, Wirtschaftlichkeit u.a. abhängig von reduzierter Energiesteuer
- Weitere Kraftstoffoptionen: Power-to-gas, BtL, GtL,...
- Neben THG sind aber auch andere Umweltkategorien betrachtet werden (Versauerung, Eutrophierung etc.)
- → Biokraftstoffe können einen Beitrag zur Steigerung der Nachhaltigkeit leisten, bei Berücksichtigung der relevanten Aspekte und N.Kriterien

Zusammenfassung Methodik – Ganzheitliche Lebenszyklusanalyse

- 1. Transparente Bewertung verschiedener Technologien hinsichtlich
 - Energieeffizienz/ Kraftstoff- und Ressourcenverbrauch
 - Treibhausgase und weitere Umweltwirkung (Smog, menschl. Gesundheit)
 - Kosten inkl. Emissionsvermeidungskosten etc.
- Identifizierung potentieller Tradeoffs zwischen Umweltwirkungen und/ oder Kosten sowie Lebenszyklusphasen (z.B. Nfz-Betrieb ←→ Kraftstoffbereitstellung) durch ganzheitliche lebenszyklusbasierte Betrachtung
- 3. Quantifizierung des aktuellen Umwelt- und Kostenprofils der kompletten Nfz-Flotte einschließlich Vorketten und externer Effekte
- Transparente und quantitative Informationsbasis bei Fragestellungen zur Umweltrelevanz des Straßengüterverkehrs
- 5. Kommunikation und Außendarstellung/Imagegewinn gegenüber Stakeholdern (z.B. Mitarbeiter, Kunden, Verwaltung und Politik)
- → Werkzeug für quantitative Entscheidungsunterstützung zur strategischen Fuhrparkausrichtung um Wettbewerbsfähigkeit zu erhöhen

Kontakt

Michael Faltenbacher (Dr.-Ing.)

PE INTERNATIONAL Hauptstrasse 111-113 70771 Leinfelden-Echterdingen **GERMANY**

Phone: +49 - (0)711 341817 29

m.faltenbacher@pe-international.com E-Mail:

Internet: www.pe-international.com

